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L-Amino acids dominate the natural world almost to the exclusion (a)serine (b)alanine (c)histidine
of p-amino gcid.s. However, some importantamino ac@dk have uryl  imine uryl  imine uryl  imine
been found in biology, notably as neurotransmittersgrine¥ and -NH -CH NH -CH -NH -CH
as building blocks f-alanine) for bacterial cell wall synthesis.

There has been considerable interest in understanding the mecha- Lhr Lhr l l 1 hr J J

nism of the so-calledL‘to b conversion” of amino acidssince
enzymes involved in these processes are often targeted for develop-

ment of therapeutic agents (e.g., antibiotics and antidepressants). Shr‘ ‘ h 2hr H ﬁ L 2hr

In nature, L-amino acids are converted tb-amino acids by

pyridoxal phosphate dependent enzymes that racemize amino acids 24 pr 3hr 6 hr

(Scheme 1a).The first step of the racemization reaction involves [l ﬂ oL h | )

the formation of a special type of imines with internal resonance-

assisted H-bonds (RAHB)We developed a chiral analogub ©f 29 hr 4thr 24 hr

pyridoxal that binds amino acids by formation of imines with _J Jl J. 1 L N J J .

RAHBs. The strong H-bonds can be used to activate the bound

amino acids and convertamino acidsi(-aa) tob-amino acidsg- 45 hrl l 45 hr l\ A 48 hrl ‘

aa) by epimerization of the imine&-(-aa) formed betweeh and ) e .
11.010.510.0 9.5 9.0 85 11.010.510.0 9.5 9.0 85 11.010.510.0 9.5 9.0 8.5

L-aa (Scheme 1D). . . . Figure 1. Partial'H NMR spectra showing the epimerization of (g)-
Receptorl was prepared as previously describ@fereoselective gy 91-p-Ser, (b)1-L-Ala to 1-0-Ala, and (c)1-L-His to 1-0-His.

recognition of amino acids by can be studied in two different
ways. In the first procedure, at least 2-fold excess of a racemic Scheme 1

mixture of amino acid is added tband allowed to equilibrate by Rﬁj\ } &, S
imine exchangé.In the second procedure, 1 equiv of an amino T @ "NHJ‘O
acid (racemic or either enantiomer) is added tand the mixture o g \g racemization 0 - ‘S o)
is allowed to equilibrate by triethylamine catalyzed epimerization ~°~%~°" - 'O_E‘o B

_ N : W

(Scheme 1b). Without the base, epimerization is not significant even
after weeks.

Epimerization of the imineslfL-aa) formed betweed and ECR); DG R
L-amino acids (Scheme 1b) were monitored I% NMR. In a s S S =
typical experiment-serine (10 mM) and. (10 mM) were mixed O o © O—HE”@ Spimerization_ CC of 0% 1"’@
in a DMSQy solution to give the corresponding iming&-i(-Ser) @G o N ) OG e p o ™
within minutes. Triethylamine (50 mM) was then added to the I_L:@ \ " boaa 1-D-a2
reaction mixture and the epimerization reaction was monitored for L-an l, 4
2 days. Figure 1 shows the time dependent change itHNMR OH’O ”w-@
spectrum due to the epimerization of three imines {fa)Ser to ) '*“1’0
1-p-Ser; (b)1-L-Ala to 1-p-Ala, (c) 1-L-His to 1-b-His). 5

In all cases (Figure 1), the signals due to the two urediNand 1

the ITmi\C—IH can ttt)e cqnvtehnél'jntl\llyl/wgofnltotrﬁ d fre_e frc_;mfother connecting the two naphthyl groups of the receptor. This is unlikely
sighais. ‘A clear patiern in or the epimerization since the energy barrier to such a rotation is expected to be’high.

reaction emerges regardless of the amino acid used. The two ure%pimerization by bond rotation or imine exchange would not be
N—H signals shift dramatically downfield and the imine-8 signal accompanied by deuteration)

shifts upfield with the epimerization reaction. Figure 1 shows that — " s 0o ¢ 1-p-aa] to [i-L-aa] at equilibrium (Scheme 1b)

the reagtlong are remarkgbly clean and complete for all amino aCIOIS'for thirteen different amino acids are listed in Table 1 (Figures S1
The epimerization reaction takes place by proton exchange at the

« p_o_smon cl)f the. ng/';g a;cg,\a/llséevgeoncecli by_de_utlerathn at this receptor binds all amino acids with the same sense of stereoselec-
position (solvent: VIV @/D0). (In principle, epimer- tivity. Although the sense of the receptor stereoselectivity for

ization could also take place by rotation about the single bond binding a-amino acids is the same as that for it binding 1,2-amino
alcohols? the magnitude of the receptor stereoselectivity is

S13, Supporting Information). It is clear from the table that the

1Eggfmvyvﬁn”;a\ﬂfoﬁ'éﬁ%rﬂ%‘versity_ considerably greater for binding-amino acids ¥10:1) than for
8 University of Toronto. binding 1,2-amino alcohols~4:1). The stronger H-bonding

1518 = J. AM. CHEM. SOC. 2007, 129, 1518—1519 10.1021/ja067724g CCC: $37.00 © 2007 American Chemical Society



COMMUNICATIONS

Table 1. The Ratios of [1-p-ad] to [1-L-aa] at Equilibrium Many interesting models of pyridoxamine including chiral ones
amino acids ol ratio amino acids ol ratio have been developed to convertketoacids too-amino acidg?
threonine 20/1 methionine 111 Receptorl may be considered a chiral model of pyridoxal. A
glutamine 15/1 glutamic acid 11/1 rational design has led to the development of a general receptor
histidine 14/1 serine 11/1 (1) that binds a wide range of amino acids with remarkably good
arginine 14/1 leucine 9/1 and even predictable stereoselectivity. Unlike other amino acid
g/srgzirr?g'”e 112%1 atlgr?itnoghan 7%1 receptors,1 can be used for deracemization of amino acids by
phenylalanine 11 epimerization of the imine intermediates that are activated by

RAHBs.
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